References & Further Reading

Books

  1. Deep Learning by Goodfellow, Bengio, and Courville
  2. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow by Aurélien Géron
    • Practical guide with code examples
    • Covers classical ML and deep learning
  3. Dive into Deep Learning by Zhang et al.
    • Interactive book with code
    • Free online: d2l.ai

Online Courses

  1. Fast.ai Practical Deep Learning
  2. DeepLearning.AI Specialization (Coursera)
    • Andrew Ng’s famous course
    • Covers fundamentals to advanced topics
  3. Stanford CS231n: CNNs for Visual Recognition
    • Excellent computer vision course
    • Lectures available on YouTube
  4. Stanford CS224n: NLP with Deep Learning
    • Comprehensive NLP course
    • Free lecture notes and videos

Papers (Key Architectures)

  1. ImageNet Classification with Deep CNNs (AlexNet, 2012)
    • Krizhevsky, Sutskever, Hinton
  2. Deep Residual Learning (ResNet, 2015)
    • He, Zhang, Ren, Sun
  3. Attention Is All You Need (Transformer, 2017)
    • Vaswani et al.
  4. BERT: Pre-training of Deep Bidirectional Transformers (2018)
    • Devlin et al.
  5. Generative Adversarial Networks (2014)
    • Goodfellow et al.

Frameworks & Documentation

  1. PyTorch
  2. TensorFlow/Keras
  3. Hugging Face

Communities & Forums

  1. Reddit
    • r/MachineLearning
    • r/learnmachinelearning
    • r/deeplearning
  2. Stack Overflow
    • pytorch tag
    • tensorflow tag
  3. PyTorch Forums
  4. TensorFlow Community

Datasets

  1. Kaggle Datasets
  2. UCI Machine Learning Repository
    • Classic datasets for learning
  3. Papers With Code

Hardware & Infrastructure

  1. TensorRigs
    • GPU recommendations: tensorrigs.com
    • Build guides for ML workstations
    • Hardware comparisons and benchmarks
  2. Cloud Platforms
    • Google Colab (free GPU)
    • Kaggle Notebooks (free GPU/TPU)
    • AWS SageMaker
    • Google Cloud AI Platform

Research & Staying Current

  1. arXiv.org
    • Latest research papers
    • cs.LG (Machine Learning) and cs.CV (Computer Vision)
  2. Papers With Code
    • Track state-of-the-art results
    • Code implementations
  3. Twitter/X
    • Follow researchers and practitioners
    • Quick updates on new developments